Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains.
نویسندگان
چکیده
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches.
منابع مشابه
Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China
Understanding the influence of climate variability and fire characteristics in shaping postfire vegetation recovery will help to predict future ecosystem trajectories in boreal forests. In this study, I asked: (1) which remotely-sensed vegetation index (VI) is a good proxy for vegetation recovery? and (2) what are the relative influences of climate and fire in controlling postfire vegetation re...
متن کاملContrasting soil thermal responses to fire in Alaskan tundra and boreal forest
Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the shortand long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the...
متن کاملDynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians
Climate change is currently considered a serious threat for many species and recognized as one of the most important factors in the global biodiversity loss. Among animal groups, amphibians are known to be among the most sensitive groups of vertebrates to climate change due to their inability to travel long distances, and mountain habitat species are more exposed to climate change pressures tha...
متن کاملWarming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades
Warming-induced drought has widely affected forest dynamics in most places of the northern hemisphere. In this study, we assessed how climate warming has affected Picea crassifolia (Qinghai spruce) forests using tree growth-climate relationships and the normalized difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau (the main range of Picea crassifolia). Bas...
متن کاملMontane forest ecotones moved downslope in northeastern USA in spite of warming between 1984 and 2011.
Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high-elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2017